
mdict4j Documentation

Hiroshi Miura

Nov 09, 2023

CONTENTS

1 Translations 3

2 Development status 5

3 License 7

4 Contents 9

5 Index 25

i

ii

mdict4j Documentation

MDict is one of popular dictionary formats. Mdict4j is a parser library for mdict dictionary.

CONTENTS 1

mdict4j Documentation

2 CONTENTS

CHAPTER

ONE

TRANSLATIONS

Chinese: https://mdict4j.readthedocs.io/zh_CN/latest Japanese: https://mdict4j.readthedocs.io/ja/latest English:
https://mdict4j.readthedocs.io/en/latest

3

https://mdict4j.readthedocs.io/zh_CN/latest
https://mdict4j.readthedocs.io/ja/latest
https://mdict4j.readthedocs.io/en/latest

mdict4j Documentation

4 Chapter 1. Translations

CHAPTER

TWO

DEVELOPMENT STATUS

A status of library development is considered as Alpha.

5

mdict4j Documentation

6 Chapter 2. Development status

CHAPTER

THREE

LICENSE

Mdict4j is distributed under GNU General Public License version 3 or (at your option) any later version. Please see
LICENSE file in project root.

7

mdict4j Documentation

8 Chapter 3. License

CHAPTER

FOUR

CONTENTS

When you want to use the library in your application project, please check “How to use” section. When you are
interested in joining the mdict4j project, “File format specification” section is good start point.

4.1 How to use mdict4j

4.1.1 Install

When you use gradle for build system, you can install mdict4j from mavenCentral.

dependencies {
implementation 'tokyo.northside:mdict4j:0.4.0'

}

We changed groupId from version 0.4.0. If you want to use old versions, please use group id ‘io.github.eb4j’

4.1.2 Loading dictionary file

You should load dictionary and create MdictDictionary object in order to invoke search query.

Path dictionaryPath = Paths.get("foo.mdx");
MDictDictionary dictionary = MDictDictionary.loadDictionary(dictionaryPath);

MDictDictionary object has several method to indicate mdx file properties.

if (dictionary.isMDX()) {
System.out.println("loaded file is .mdx");

}
if (StandardCharsets.UTF_8.equals(dictionary.getEncoding())) {

System.out.println("MDX file encoding is UTF-8");
}
if (dictionary.isHeaderEncrypted()) {

System.out.println("MDX file is encrypted.");
}
if (dictionary.isIndexEncrypted()) {

System.out.println("MDX index part is encrypted.");
}
System.out.printf("MDX version: %d, format: %s", dictionary.getMdxVersion(), dictionary.
→˓getFormat());

(continues on next page)

9

mdict4j Documentation

(continued from previous page)

System.out.println(dictionary.getCreationDate());
System.out.println(dictionary.getTitle());
System.out.println(dictionary.getDescription());

You can invoke query from MDictDictionary object. MDictDictionary::readArticles method returns a list of entries.
MDictDictionary::readArticles method returns exact match results. MDictDictionary::readArticlesPredictive method
returns predictive search match results.

for (Map.Entry<String, String> entry: dictionary.readArticles("hello")) {
System.out.println("<div>%s: %s</div>", entry.getKey(), entry.

→˓getValue());
}

You will see something like hello:

for (Map.Entry<String, String> entry: dictionary.readArticlesPredictive("happ")) {
System.out.println("<div>%s: %s</div>", entry.getKey(), entry.

→˓getValue());
}

You will see something like happy: happiness:

When you want to load MDD data file, you can give it to MDictDictionary##loadDictionaryData method.

Path dataPath = Paths.get("foo.mdx");
MDictDictionary dictData = MDictDictionary.loadDictionaryData(dataPath);
if (!dictData.isMDX()) {

System.out.println("loaded file is .mdd");
}
Map.Entry<String, Object> entry = dictData.getEntries("/audio/test.mp3").get(0);
Object value = entry.getValue();
byte[] buf = dictData.getData((Long) value); // buf contains mp3 data.
Tika tika = new Tika();
String mediaType = tika.detect(buf);
System.out.println("Media type should be audio/mpeg: %s", mediaType);

Please check javadoc for details.

./gradlew javadoc

4.2 Security Policy

4.2.1 Supported Versions

Version Status
0.5.x Development version
< 0.5 not supported

10 Chapter 4. Contents

mdict4j Documentation

4.2.2 Reporting a Vulnerability

Please disclose security vulnerabilities privately at miurahr@linux.com in English or Japanese, no Chinese.

4.3 Contribution guide

This is contribution guide for mdict4j project. You are welcome to send a Pull-Request, reporting bugs and ask ques-
tions.

4.3.1 Resources

• Project owner: Hiroshi Miura

• Bug Tracker: CodeBerg issue Tracker

• Status: Alpha

• Activity: moderate

4.3.2 Bug triage

Every report to github issue tracker should be in triage. whether it is bug, question or invalid.

4.3.3 Send patch

Here is small amount rule when you want to send patch the project;

1. every proposal for modification should send as ‘Pull Request’

1. each pull request can consist of multiple commits.

1. you are encourage to split modifications to individual commits that are logical subpart.

4.3.4 CI tests

The project configured to use Azure Pipelines for regression test. You can see test results on badge and see details in a
web page linked from badge.

4.4 Contributor Covenant Code of Conduct

4.4.1 Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience
for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion,
or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

4.3. Contribution guide 11

mailto:miurahr@linux.com
https://codeberg.org/miurahr/mdict4j/issues

mdict4j Documentation

4.4.2 Our Standards

Examples of behavior that contributes to a positive environment for our community include:

• Demonstrating empathy and kindness toward other people

• Being respectful of differing opinions, viewpoints, and experiences

• Giving and gracefully accepting constructive feedback

• Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience

• Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

• The use of sexualized language or imagery, and sexual attention or advances of any kind

• Trolling, insulting or derogatory comments, and personal or political attacks

• Public or private harassment

• Publishing others’ private information, such as a physical or email address, without their explicit permission

• Other conduct which could reasonably be considered inappropriate in a professional setting

4.4.3 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take
appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, is-
sues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

4.4.4 Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing
the community in public spaces. Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed representative at an online or offline event.

4.4.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders re-
sponsible for enforcement at Hiroshi Miura <miurahr@linux.com>. All complaints will be reviewed and investigated
promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

12 Chapter 4. Contents

mailto:miurahr@linux.com

mdict4j Documentation

4.4.6 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action
they deem in violation of this Code of Conduct:

Phase 1. Correction

Community Impact:
Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the community.

Consequence:
A private, written warning from community leaders, providing clarity around the nature of the violation and an
explanation of why the behavior was inappropriate. A public apology may be requested.

Phase 2. Warning

Community Impact:
A violation through a single incident or series of actions.

Consequence:
A warning with consequences for continued behavior. No interaction with the people involved, including un-
solicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes
avoiding interactions in community spaces as well as external channels like social media. Violating these terms
may lead to a temporary or permanent ban.

Phase 3. Temporary Ban

Community Impact:
A serious violation of community standards, including sustained inappropriate behavior.

Consequence:
A temporary ban from any sort of interaction or public communication with the community for a specified period
of time. No public or private interaction with the people involved, including unsolicited interaction with those
enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent
ban.

Phase 4. Permanent Ban

Community Impact:
Demonstrating a pattern of violation of community standards, including sustained inappropriate behavior, ha-
rassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence:
A permanent ban from any sort of public interaction within the community.

4.4. Contributor Covenant Code of Conduct 13

mdict4j Documentation

4.4.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant version 2.0. You can take it from Contributor Covenant
homepage.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ or its translations.

4.5 File format specification

4.5.1 Reference origin and license

A fileformat.md here is the reference description from writemdict project with copyright by zhansliu, distributed under
the MIT License, the term is attached as MIT.txt.

4.5.2 Introduction

This is a description of version 2.0 of the MDX and MDD file format, used by the MDict dictionary software. The
software is not open-source, nor is the file format openly specified, so the following description is based on reverse-
engineering, and is likely incomplete and inaccurate in its details.

Most of the information comes from https://bitbucket.org/xwang/mdict-analysis. While xwang mostly focuses on being
able to read this unknown format, I have added details that are necessary to also write MDX files.

4.5.3 Concepts

MDX and MDD files are both designed to store an associative array of pairs (keyword, record).

For MDX files, the information stored is typically a dictionary. The keyword and record are both (Unicode) strings,
with the keyword being the headword for the dictionary entry, and the record giving a description of that word. An
example of an MDX entry could be:

• keyword: “reverse engineering”

• record: “noun: a process of analyzing and studying an object or device, in order to understand its inner workings”

MDD files are instead designed to store binary data. Typically, the keyword is a file path, and the record is the contents
of that file. As an example, we may have:

• keyword: “\image.png”

• record: 0x89 0x50 0x4e 0x47 0x0d 0x0a 0x1a 0x0a. . .

MDX files is designed to store a dictionary, i.e. a collection of pairs (keyword, record), which could be, for example,
keyword=”reverse engineering”, record=”noun: a process of analyzing and studying an object or device, in order to
understand its inner workings”.

Typically, MDD files are associated with an MDX file of the same name (but with extension .mdx instead of .mdd),
and contains resources to be included in the text of MDX files. For example, and entry of the MDX file might contain
the HTML code , in which case the MDict software will look for the entry
“\image.png” in the MDD file.

14 Chapter 4. Contents

https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://www.contributor-covenant.org
https://github.com/mozilla/diversity
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations
https://github.com/zhansliu/writemdict
http://www.octopus-studio.com/product.en.htm

mdict4j Documentation

4.5.4 File structure

The basic file structure is a follows:

MDX File

header_sect Header section. See “Header Section” below.
keyword_sect Keyword section. See “Keyword Section” below.
record_sect Record section. See “Record Section” below.

4.5.5 Header Section

header_sect Length

length 4 bytes Length of header_str, in bytes. Big-endian.
header_str varying An XML string, encoded in UTF-16LE. See below for details.
checksum 4 bytes ADLER32 checksum of header_str, stored little-endian.

The header_str consists of a single, XML tag dictionary, with various attributes. For MDX files, they look like
this: (newlines added for clarity)

<Dictionary
GeneratedByEngineVersion="2.0"
RequiredEngineVersion="2.0"
Encrypted="2"
Encoding="UTF8"
Format="Html"
CreationDate="2015-01-01"
Compact="No"
Compat="No"
KeyCaseSensitive="No"
Description="This is a <i>test dictionary</i>."
Title="My dictionary"
DataSourceFormat="106"
StyleSheet=""
RegisterBy="Email"
RegCode="0102030405060708090A0B0C0D0E0F"/>

For MDD files, we have instead:

<Library_Data
GeneratedByEngineVersion="2.0"
RequiredEngineVersion="2.0"
Encrypted="2"
Format=""
CreationDate="2015-01-01"
Compact="No"
Compat="No"
KeyCaseSensitive="No"

(continues on next page)

4.5. File format specification 15

mdict4j Documentation

(continued from previous page)

Description="This is a <i>test dictionary</i>."
Title="My dictionary"
DataSourceFormat="106"
StyleSheet=""
RegisterBy="Email"
RegCode="0102030405060708090A0B0C0D0E0F"/>

The meaning of the attributes are explained below:

Attribute Description
GeneratedByEngineVersionThe version of the file format. This document describes version 2.0. Apart from this, version 1.2 is

also possible.
RequiredEngineVersionPresumably the lowest format version compatible with this version.
Encrypted An integer between 0 and 3 (inclusive). If the lower bit is set, indicates that the first part of the keyword

section is encrypted, as described in the section Keyword header encryption. If the upper bit is set,
indicates that the keyword index is encrypted, using the scheme described in Keyword index encryption.

Encoding Only used for MDX files. The encoding used for text in the document. Possible values are “UTF-8”,
“UTF-16” (uses little-endian encoding), “GBK”, and “Big5”. For MDD files, the encoding used for
the keywords (file paths) is always UTF-16, and the records consist of binary data.

Format The format of the dictionary entry texts. Possible values include “Html” and “Text”. For MDD files,
this must be empty.

CreationDateThe date the dictionary was created.
Compact If this is “Yes”, indicates the dictionary entries is in an Mdict-specific compact format, where certain

string are replaced according to the scheme specified in StyleSheet. See the documentation for the
official MdxBuilder client for details.

Compat Appears to be a typo for Compact, which certain versions of the official Mdict client look for instead
of Compact.

KeyCaseSensitiveIndicates to the dictionary reader whether or not keys should be treated in a case-insensitive manner.
DescriptionA description of the dictionary, which appears as the “:about” page in the official MDict client.
Title The title of the dictionary.
DataSourceFormatUnknown.
StyleSheetUsed in conjunction with the Compact option. See the documentation for the official MdxBuilder

client for details.
RegisterByEither “EMail” or “DeviceID”. Only used if the lower bit of Encrypted is set. Indicates which

piece of user-identifying data is used to encrypt the encryption key. See the section Keyword header
encryption for details.

RegCode When keyword header encryption is used (see Keyword header encryption), this is one way to deliver
the encrypted key. In this case, this is a string consisting of 32 hexadecimal digits.

16 Chapter 4. Contents

mdict4j Documentation

4.5.6 Keyword Section

The keyword section contains all the keywords in the dictionary, divided into blocks, as well as information about the
sizes of these blocks.

keyword_sect Length

num_blocks 8
bytes

Number of items in key_blocks. Big-endian. Possibly encrypted, see below.

num_entries 8
bytes

Total number of keywords. Big-endian. Possibly encrypted, see below.

key_index_decomp_len8
bytes

Number of bytes in decompressed version of key_index. Big-endian. Possibly en-
crypted, see below.

key_index_comp_len8
bytes

Number of bytes in compressed version of key_index (including the comp_type and
checksum parts). Big-endian. Possibly encrypted, see below.

key_blocks_len 8
bytes

Total number of bytes taken up by key_blocks. Big-endian. Possibly encrypted, see
below.

checksum 4
bytes

ADLER32 checksum of the preceding 40 bytes. If those are encrypted, it is the check-
sum of the decrypted version. Big-endian.

key_index vary-
ing

The keyword index, compressed and possibly encrypted. See below.

key_blocks[0] vary-
ing

A compressed block containing keywords, compressed. See below.

.
key_blocks[num_blocks-1]vary-

ing
. . .

4.5.7 Keyword header encryption:

If the parameter Encrypted in the header has the lowest bit set (i.e. Encrypted | 1 is nonzero), then the 40-byte
block from num_blocks are encrypted. The encryption used is Salsa20/8 (Salsa20 with 8 rounds instead of 20). In
pseudo-Python:

def encrypt(message, key):
salsa20_8_init(key_length = 128, #128 bits

iv_length = 64, # 64 bits
ivs = b"\0\0\0\0\0\0\0\0"), #64 bits of zeros)

return salsa20_8_encrypt(message, key)

encrypted_block = encrypt(unencrypted_block, key=ripemd128(encryption_key))

Here, encryption_key is the dictionary password specified on creation of the dictionary.

This encryption_key is not distributed directly. Instead it is further encrypted, using a piece of data, user_id, that
is specific to the user or the client machine, according to the following scheme:

reg_code = encrypt(ripemd128(encryption_key), ripemd128(user_id))

The string user_id can be either an email address (“example@example.com”) that the user enters into his/her MDict
client, or a device ID (“12345678-90AB-CDEF-0123-4567890A”) which the MDict client obtains in different ways
depending on the platform. The choice of which one to use depends on the attribute RegisterBy in the file header.
(See Header section.) In either case, user_id is an ASCII-encoded string. On certain platforms, the official MDict
client seems to default to the DeviceID being the empty string.

4.5. File format specification 17

mdict4j Documentation

The 128-bit reg_code is then distributed to the user. This can be done in two ways:

• If the MDX file is called dictionary.mdx, the dictionary reader should look for a file called dictionary.key
in the same directory, which contains reg_code as a 32-digit hexadecimal string.

• Otherwise, reg_code can be included in the header of the MDX file, as the attribute RegCode.

Keyword index

The keyword index lists some basic data about the key blocks. It is compressed (see “Compression”), and possibly
encrypted (see “Keyword index encryption”). After decompression and decryption, it looks like this:

decompress(key_index)Length

num_entries[0] 8
bytes

Number of keywords in the first keyword block.

first_size[0] 2
bytes

Length of first_word[0], not including trailing null character. In number of “basic
units” for the encoding, so e.g. bytes for UTF-8, and 2-byte units for UTF-16.

first_word[0] vary-
ing

The first keyword (alphabetically) in the key_blocks[0] keyword block. Encoding
given by Encoding attribute in the header.

last_size[0] 2
bytes

Length of last_word[0], not including trailing null character. In number of “basic
units” for the encoding, so e.g. bytes for UTF-8, and 2-byte units for UTF-16.

last_word[0] vary-
ing

The last keyword (alphabetically) in the key_blocks[0] keyword block. Encoding
given by Encoding attribute in the header.

comp_size[0] 8
bytes

Compressed size of key_blocks[0].

decomp_size[0] 8
bytes

Decompressed size of key_blocks[0].

num_entries[1] 8
bytes

. . .

.
decomp_size[num_blocks-1]8

bytes
. . .

Keyword index encryption:

If the parameter Encrypted in the header has its second-lowest bit set (i.e. Encrypted | 2 is nonzero), then the
keyword index is further encrypted. In this case, the comp_type and checksum fields will be unchanged (refer to the
section Compression), the following C function will be used to encrypt the compressed_data part, after compression.

#define SWAPNIBBLE(byte) (((byte)>>4) | ((byte)<<4))
void encrypt(unsigned char* buf, size_t buflen, unsigned char* key, size_t keylen) {

unsigned char prev=0x36;
for(size_t i=0; i < buflen; i++) {

buf[i] = SWAPNIBBLE(buf[i] ^ ((unsigned char)i) ^ key[i%keylen] ^␣
→˓previous);

previous = buf[i];
}

}

The encryption key used is ripemd128(checksum + "\x95\x36\x00\x00"), where + denotes string concatenation.

18 Chapter 4. Contents

mdict4j Documentation

Keyword blocks

Each keyword is compressed (see “Compression”). After decompressing, they look like this:

decompress(key_blocks[0])Length

offset[0] 8
bytes

Offset where the record corresponding to key[0] can be found, see below.
Big-endian.

key[0] vary-
ing

The first keyword in the dictionary, null-terminated and encoded using
Encoding.

offset[1] 8
bytes

. . .

key[1] vary-
ing

. . .

.

The offset should be interpreted as follows: Decompress all record blocks, and concatenate them together,
and let records denote the resulting array of bytes. The record corresponding to key[i] then starts at
records[offset[i]].

4.5.8 Record section

The record section looks like this:

record_sect Length

num_blocks 8
bytes

Number items in record_blocks. Does not need to equal the number of keyword
blocks. Big-endian.

num_entries 8
bytes

Total number of records in dictionary. Should be equal to keyword_sect.
num_entries. Big-endian.

index_len 8
bytes

Total size of the comp_size[i] and decomp_size[i] variables, in bytes. In other
words, should equal 16 times num_blocks. Big-endian.

blocks_len 8
bytes

Total size of the rec_block[i] sections, in bytes. Big-endian.

comp_size[0] 8
bytes

Length of rec_block[0], in bytes. Big-endian.

decomp_size[0] 8
bytes

Decompressed size of rec_block[i], in bytes. Big-endian.

comp_size[1] 8
bytes

Length of rec_block[1], in bytes. Big-endian.

.
decomp_size[num_blocks-1]8

bytes
. . .

rec_block[0] vary-
ing

A compressed block containing records. See below.

.
rec_block[num_blocks-1]vary-

ing
. . .

4.5. File format specification 19

mdict4j Documentation

Record block

Each record block is compressed (see “Compression”). After decompressing, they look like this:

decompress(rec_block[0])Length

record[0] vary-
ing

The first record. If in an MDX file, this is null-terminated and encoded using
Encoding.

record[1] vary-
ing

. . .

.

4.5.9 Compression:

Various data blocks are compressed using the same scheme. These all look like these:

compress(data) Length

comp_type 4 bytes Compression type. See below.
checksum 4 bytes ADLER32 checksum of the uncompressed data. Big-endian.
compressed_data varying Compressed version of data.

The compression type can be indicated by comp_type. There are three options:

• If comp_type is '\x00\x00\x00\x00', then no compression is applied at all, and compressed_data is equal
to data.

• If comp_type is '\x01\x00\x00\x00', LZO compression is used.

• If comp_type is '\x02\x00\x00\x00', zlib compression is used. It so happens that the zlib compression
format appends an ADLER32 checksum, so in this case, checksum will be equal to the last four bytes of
compressed_data.

4.6 Change Log

All notable changes to this project will be documented in this file.

4.6.1 Unreleased

4.6.2 0.5.4

• Gradle: use version catalog

• Bump Jackson@2.14.2

• Bump bouncycastle@1.76

• Bump Gradle@8.3

20 Chapter 4. Contents

mdict4j Documentation

4.6.3 0.5.3

• Gradle: add spotless config

• Update javadoc descriptions

4.6.4 0.5.2

• Fixed to return only a target article text (#89)

• Fix loading error degraded in V0.5.0 for V2/UTF-16 dictionary

4.6.5 0.5.0

• Bump required JAVA 11

• Introduce module-info.java

• Fix the case when dictionary is Ver1.2/UTF-16

• Bump Gradle@7.6

• Bump versions:

– Gradle plugin tokyo.northside.sphinx@1.0.4

– jetbrains annotations@23.1.0

– jackson@2.14.0

– groovy-all@3.0.14

– junit@5.9.0

– jsoup@1.15.3

– tika@2.6.0

– slf4j-simple@2.0.5

• Replace cache with SimpleLRUCache

– Drop Caffeine dependency

• Remove python files in docs/_extensions

4.6.6 0.4.3

• Fix issue in FatJar

• Change dependencies versions

– Tika@2.4.1 (Fix CVE-2022-33879)

– Jackson@2.12.7 (Fix FatJar issue)

• Update test case

4.6. Change Log 21

mdict4j Documentation

4.6.7 0.4.2

• Docs: Add .readthedocs.yaml document build configuration file

• Docs: Fix language configuration

• Docs: Update dependency MyST-Parser to support Markdown

• Docs: Fix changelog links

4.6.8 0.4.0

• Change group id to “tokyo.northside”

4.6.9 0.3.1

• Fix public method name typo

– change main load method name MDictDictionary#loadDictionary

4.6.10 0.3.0

• Caching index with Caffeine

– mdict4j automatically cache queried articles, maximum 1000 entries in 15 min.

• Don’t automatically index in lower case

– User need to check MDictDictionary#isKeyCaseSensitive() whether query lower case or not.

• Bump versions

– slf4j-simple@1.7.36

– spotless@6.2.2

• Fix and add test cases

4.6.11 0.2.4

• Introduce readArticles and readArticlesPredictive method

• Introduce readData method

• Change behavior

– Do not search again with lower case.

• Bump versions

– Tika@2.3.0

– Gradle git-version@0.13.0

– Spotless@6.2.1

– SpotBugs@5.0.5

– Actions setup-java@2.5.0

– Actions gradle-build-action@v2

22 Chapter 4. Contents

mdict4j Documentation

4.6.12 0.2.3

• Bump Gradle/gradle-build-action@v2

4.6.13 0.2.2

• Bump versions

– Jackson@2.13.1

– JUnit@5.8.2

– Gradle kotlin@1.6.10

– actions setup-java@2.4.0

– BouncyCastle@1.70

– Gradle@7.3.2

4.6.14 0.2.1

• Support dictionary that use UTF-16(LE) as encoding.

– Force endian to LE when UTF-16 is specified even lacking BOM.

4.6.15 0.2.0

• Support MDD file loading

• Test: Apache Tika for dependency

• Improve test

4.6.16 0.1.4

• Bump jackson@2.10.5

• Experimental implementation for .MDD file

• Update and fix v1 parser

• Update and fix dictionary key loading

• Improve tests

4.6.17 0.1.3

• Change jackson version to 2.7.4.

4.6. Change Log 23

mdict4j Documentation

4.6.18 0.1.2

• Fix publish configurations

4.6.19 0.1.1

• First release

4.6.20 0.1.0

• First internal release

24 Chapter 4. Contents

CHAPTER

FIVE

INDEX

• genindex

• modindex

• search

25

	Translations
	Development status
	License
	Contents
	How to use mdict4j
	Install
	Loading dictionary file

	Security Policy
	Supported Versions
	Reporting a Vulnerability

	Contribution guide
	Resources
	Bug triage
	Send patch
	CI tests

	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Enforcement Responsibilities
	Scope
	Enforcement
	Enforcement Guidelines
	Phase 1. Correction
	Phase 2. Warning
	Phase 3. Temporary Ban
	Phase 4. Permanent Ban

	Attribution

	File format specification
	Reference origin and license
	Introduction
	Concepts
	File structure
	Header Section
	Keyword Section
	Keyword header encryption:
	Keyword index
	Keyword index encryption:

	Keyword blocks

	Record section
	Record block

	Compression:

	Change Log
	Unreleased
	0.5.4
	0.5.3
	0.5.2
	0.5.0
	0.4.3
	0.4.2
	0.4.0
	0.3.1
	0.3.0
	0.2.4
	0.2.3
	0.2.2
	0.2.1
	0.2.0
	0.1.4
	0.1.3
	0.1.2
	0.1.1
	0.1.0

	Index

